
LLNL-TR-636044

Active Measurement of Memory
Resource Consumption

M. Casas Guix, G. Bronevetsky

May 2, 2013

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Active Measurement of Memory Resource
Consumption

Marc Casas, Greg Bronevetsky
Lawrence Livermore National Laboratory

Livermore, California

Abstract—
Hierarchical memory is a cornerstone of modern hardware

design because it provides high memory performance and ca-
pacity at a low cost. However, the use of multiple levels of
memory and complex cache management policies makes it very
difficult to optimize the performance of applications running
on hierarchical memories. As the number of compute cores
per chip continues to rise faster than the total amount of
available memory, applications will become increasingly starved
for memory storage capacity and bandwidth, making the problem
of performance optimization even more critical.

We propose a new methodology for measuring and modeling
the performance of hierarchical memories in terms on the
application’s utilization of the key memory resources: capacity
of a given memory level and bandwidth between two levels.
This is done by actively interfering with the application’s use of
these resources. The application’s sensitivity to reduced resource
availability is measured by observing the effect of interference on
application performance. The resulting resource-oriented model
of performance both greatly simplifies application performance
analysis and makes it possible to predict an application’s per-
formance when running with various resource constraints. This
is useful to predict performance for future memory-constrained
architectures.

I. INTRODUCTION

Hierarchical memory (registers, caches and main memory)
is a critical driver of modern systems’ high performance
because it combines small amounts of fast but expensive
memory and large amounts of slower, cheaper memory to
provide an excellent balance of low cost, high performance and
high capacity. However, its complexity makes it very difficult
to achieve high performance and energy efficiency for real
applications, a problem that has motivated significant research
on cache-friendly algorithms [10], [7] and performance anal-
ysis tools to simplify this task [19], [15], [12]. Unfortunately,
even after decades of work, the goal of easy-to-use memory
optimization techniques is still far from reach.

Modern architectural designs provide increasing improve-
ments in computation capability while maintaining a constant
power utilization by increasing the number of cores on each
chip. Since the power-efficiency and cost-efficiency memory
designs is not improving at the same rate, the amount of
memory per compute core is dropping [13]. This is especially
true for High Performance Computing (HPC) systems, where
hard limits on power costs will mean that next-generation
Exascale systems may provide one or two orders of magnitude
less memory capacity and bandwidth per core than today’s sys-
tems [13]. These limitations will force application designers to

fundamentally rethink how their algorithms utilize the memory
system and will make effective memory optimization method-
ologies critical for maintaining application performance on
future systems.

Ensuring that applications use the memory hierarchy opti-
mally or restructuring algorithms to leverage hierarchies that
are deeper (more levels) and thinner (fewer resources per
core) requires a detailed analysis of how an application uses
memory. Although there exists a wide range of tools to help
with this task, they have key limitations. Simulation-based
tools such as cachegrind [16] and gem5 [4] can analyze
the application’s behavior in great detail and can predict the
performance of any collection of applications running on any
hardware configuration. However, such tools run hundreds
or thousands times slower than native execution and cannot
simulate the commercial architectures on which almost all
applications run because simulator developers have no access
to their proprietary details. These limitations have motivated
work on tools based on monitoring hardware performance
counters. These tools report metrics such cache miss rates or
instructions per cycle for various code regions [19], conduct
complex statistical analyses of such counter data [12] or
connect them to other aspects of the application, such as
data structures [15]. Although these tools are efficient and
precisely capture the state of the hardware and how it is
utilized by the application, this information is not actionable
in most cases. First, the metrics reported by these tools
are so low-level that they can only be interpreted by the
most hardware-savvy developers. Further, this information is
not useful for predicting how the application may behave
in alternate scenarios, such as if its available resources are
reduced by the execution of other software or because the
application runs on a new platform. The limitations of today’s
techniques motivate the need for a new approach that combines
the predictive capability of simulation-based tools with the
high performance of counter-based tools and works for real
commercial proprietary hardware.

This paper presents a new performance analysis technique
that addresses this need by capturing the application’s effective
use of the storage capacity of different levels of the memory hi-
erarchy as well as the bandwidth between adjacent levels. Our
approach models various memory components as resources
and measures how much of each resource the application uses
from the application’s own perspective. To the application a
given amount of a resource is “used” if not having this amount

Application
resource

use

25%

20% Predicted use

50%

75%

85%

No
performance
degradation

Degradation

Resource interference %

Fig. 1. The application’s resource use is measured by interfering with
increasing fractions of the resource until this affects application performance

will degrade the application’s performance. This is in contrast
to the hardware-centric perspective that considers “use” as any
hardware action that utilizes the resource, even if it has no
effect on performance. For instance, while from the hardware
perspective cache storage capacity is “used” when live data is
stored in it, to the application it is “used” only if the data
is part of the application’s active working set. This paper
specifically focuses on measuring storage capacity in caches
that are shared by multiple cores and the bandwidth between
them and higher levels of the memory hierarchy. In addition
to measuring use, we also quantify the application’s sensitivity
to being provided less of the resource than it optimally needs.
This predicts how well the application would run in scenarios
where less of the resource if provided, such as the memory
hierarchy of a future system (e.g. a node of an Exascale
system).

We measure the application’s use of memory resources via
the proactive methodology illustrated in Figure 1. While the
application runs it uses a given fraction of each resource
at a given level of a memory hierarchy (denoted “level X
cache”). If this level X cache is shared among multiple cores
it is possible to measure this use by running on another
core an interference thread that utilizes a known amount of
cache capacity or bandwidth, where the use of a separate
core limits the thread’s effects to just the chosen resource.
The algorithm increases the amount of resource used until the
main application’s performance is observed to degrade. The
difference between the total amount of the resource and the
amount used by the interference thread at that point is the
amount actively used by the application. If the application’s
performance is not sensitive to the interference then it either
primarily uses a higher level of the memory hierarchy (little
use of level X) or doesn’t fit in level X and is thus not
sensitive to reductions in its capabilities. The two cases can
be differentiated by observing the application’s miss rates for
level X cache.

Overall, this paper’s contributions are:
• A methodology to actively measure the application’s

resource use in terms of the effect of availability of this
resource on its performance.

• A novel interference-based mechanism to simulate a
reduction in available memory storage and bandwidth on
a given real hardware architecture.

Cache Capacity Line Size Associativity

Private
L1 I 32KB 64 bytes 8-way
L1 D 32KB 64 bytes 8-way

L2 256KB 64 bytes 8-way
Shared L3 20MB 64 bytes 20-way

TABLE I
8-CORE INTEL XEON E5-2670 MEMORY HIERARCHY

• A validation technique for quantifying the real effects
of our interference mechanisms on the application and
bounding the effects of a given source on interference on
unrelated resources.

• A method to predict how the application’s performance
will degrade on alternative, less capable memory hierar-
chies.

Section II presents our interference measurement methodol-
ogy. This approach is validated in Section III using both mi-
crobenchmarks with well-characterized memory behavior and
the MCB [2] and Lulesh [1] benchmarks on well-characterized
hardware platforms. Section IV demonstrates how our mea-
surements can be applied to real parallel applications by
measuring the cache storage and bandwidth requirements of
MCB and Lulesh. Our evaluation quantifies the performance
degradation that results from providing applications with dif-
ferent amounts of memory resources, enabling more intelligent
work scheduling and architecture design planning.

II. MEASUREMENT METHODOLOGY

Each level of the memory hierarchy provides two resources:
storage capacity and communication bandwidth to the (larger
and slower) level below it. Our Active Measurement method-
ology measures the application’s use of these resources by
comparing its performance when running on a given memory
system to its performance when less of a given memory
system resource is available due to the execution of a special
interference thread. Specifically, the techniques presented in
this paper focus on portions of the memory hierarchy that are
shared among multiple cores. This restriction enables more
precise measurements by making it easier to isolate the effects
of the interference thread to just the specific resource it is
designed to target because the interference threads run on
different cores that share the resource. This section details the
design of these threads and Section III experimentally validates
that each thread is effective at using up the resource that it
targets and uses few other resources.

Our experiments focus on the following architecture: 2-
socket nodes with 8-core Intel Xeon E5-2670 processors. The
L1 and L2 caches are private to each core, while the L3 cache
is shared among all the cores on a socket. The L3 on the Intel
Xeon E5-2670 is 20MB in size and this architecture is thus
denoted Xeon20MB (details in Table I).

A. Memory Bandwidth Interference

The pseudo-code of the bandwidth interference thread,
denoted BWThr is shown in Figure 2. This code attempts to

long long i n t∗ buf 0 =
ma l l oc (s i z e o f (long long i n t)∗ b u f S i z e) ;

. . .
long long i n t∗ buf numBufs =

ma l l oc (s i z e o f (long long i n t)∗ b u f S i z e) ;

f o r (i n t i =0 ; 1 ; i ++) {
buf 0 [i d e n t i t y (l a r g e P r i m e∗ i)% b u f S i z e] + + ;
. . .
buf numBufs [i d e n t i t y (l a r g e P r i m e∗ i)% b u f S i z e] + + ;

}

Fig. 2. Pseudo-code of the bandwidth interference thread BWThr

i n t∗ buf = ma l lo c (s i z e o f (i n t)∗ b u f S i z e) ;
whi le (1) buf [r a n d o m p o s i t i o n] + + ;

Fig. 3. Pseudo-code of the storage interference thread CSThr

transfer as much data as possible between one memory hier-
archy level and the next by issuing a large number of memory
accesses that will miss in the first level. We induce frequent
memory misses by allocating a buffer and iterating it with a
stride that is a large prime number. The use of a prime keeps
the number of iterations between adjacent accesses to the same
location large and the constant stride makes it possible for the
hardware prefetcher to help use up more bandwidth. Further,
to ensure that the compiler cannot perform any optimizations
based on the simple access pattern, the computation of the
strided index largePrime*i is wrapped inside a call to an
identity function that is located in a different file and thus
not available at compile time. One side-effect of this is that
the compiler can no longer transform the loop to issue the
maximum number of simultaneous memory accesses that the
underlying hardware can support. We overcome this problem
by simultaneously performing this procedure for many buffers
at the same time (our experiments use 44, which we discovered
to be sufficient), maximizing the concurrent memory traffic.

B. Cache Storage Interference

Figure 3 shows the pseudo-code of the storage interference
thread, denoted CSThr. It allocates a buffer of a given size
and then randomly touches elements in this buffer. If the buffer
fits inside the high-level private caches of CSThr’s processor
this iteration has little effect on the cache shared by it and
the application. This is because once the data is fetched into
this cache during the initial iterations of the inner loop, there
will be no additional cache misses. However, once the array
grows larger than the private caches, the random order of the
memory accesses ensures that many of the buffer accesses will
miss in the private cache and will always hit in the lower-level
shared cache. These caches use the least-recently-used (LRU)
eviction policy, which will evict the least recently accessed
cache lines as the loop progresses. LRU implies that the next
iteration’s accesses to buf have a high probability of missing
in the private cache. A random memory access pattern ensures
a more intense perturbation than linear access patterns because
the probability of consecutively accessing two addresses of the

same cache line is very low, meaning that almost every access
misses in the L1 and L2 and hits in the L3. Further, the use
of random access ensures that the hardware pre-fetcher will
not recognize the access pattern and thus will not fetch in
additional addresses outside the target buffer. Because CSThr
spends all of its time passing over the buffer, the application
threads have little chance to use the cache space assigned to
the buffer before CSThr accesses this line again and pulls
this resource away from the application. The design of CSThr
ensures that it predictably utilizes a fixed fraction of the target
shared cache and prevents the application from making any
productive use of it.

III. VALIDATION

In this section we evaluate the amount of storage and band-
width resources the interference threads utilize and validate our
results. We also demonstrate that each interference thread only
utilizes its target resource, meaning that they affect application
behavior orthogonally.

A. Memory Bandwidth Interference

The bandwidth used by BWThr is computed based on the
number of L3 cache misses it incurs. Since each miss causes
a full cache line to be transferred from main memory the the
L3 of its core, its bandwidth use is computed as:

BW =
cache line size ·#cache misses

ExecutionT ime
(1)

This is simply the total amount of memory transferred between
the given memory hierarchy level and the next, divided by the
application’s execution time.

Our measurements indicate that using a 520KB buffer
a single BWThr utilizes 2.8GB/s per core in Xeon20MB.
Since Xeon20MB provides 17GB/s of bandwidth between
the L3 cache and memory according to the STREAM bench-
mark [14], 7 BWThrs running on 7 different cores would
consume approximately 100% of the available bandwidth.

B. Cache Storage Interference

The CSThr utilizes cache storage by repeatedly accessing a
range of memory addresses, attempting to deny the application
their use. However, because there is a time window between
adjacent touches by CSThr of the same cache location it is
possible for the application to bring its own data into this
location and make productive use of it before it is evicted
by CSThr. As such, the total amount of storage utilized by
CSThr cannot be computed directly and must be computed
based on its effects on representative applications. We evaluate
this in two ways. First, as described in Section III-C we
create several synthetic benchmarks with different well-known
memory access patterns based on probability distributions. We
then use the knowledge of a each benchmark’s distribution
to derive the L3 cache miss rate that the benchmark would
observe when running on a fully associative cache of a given
size. Given the L3 miss rate observed when each benchmark
runs concurrently with CSThr we can then compute the
effective cache size that is available to the benchmark at a

i n t∗ buf = ma l l oc (s i z e o f (i n t)∗ b u f S i z e) ;
f o r (i n t i =0 ; i<N ACCESSES ; i ++) {

i n t v a l u e = buf [X ()] ;
/ / Some c o m p u t a t i o n i n v o l v i n g v a l u e

}

Fig. 4. Probabilistic Memory Access Algorithm. X() is a random variable
that has a probability distribution function f associated.

given level of CSThr interference. Our experiments show
that in most cases CSThr has a consistent effect for all the
benchmarks and identify the narrow range of applications and
interference levels for which the effects of CSThr cannot be
accurately quantified.

C. Validation Based on Synthetic Benchmarks

1) Benchmark Design: Figure 4 shows the skeleton of the
synthetic benchmarks we use to validate CSThr. It loops over
a buffer N ACCESS times and in each iteration reads the
value at a buffer index chosen randomly from some probability
distribution and performs some number of computations on
this location. In our experiments we created several different
variants of this benchmark for a range of probability distribu-
tions and different degrees of data reuse. Table II lists all the
distributions considered and represents both a wide range of
access patterns as well as degrees of spatial locality (depends
on the standard deviation, which is varied widely). Data reuse
is varied by setting the computation performed after each read
to be 1, 10 or 100 integer additions.

The first step in our analysis is to derive the expected
L3 cache miss rate for each benchmark given the amount
of cache storage that is available. This is computed via the
following formula, which calculates the probability that a
given randomly sampled index is in the cache and uses it to
compute the Expected Hit Rate (EHR):

EHR =
∑

i ∈ buffer

P (i is accessed) · P (i ∈ cache) (2)

P (i is accessed) is equal to the probability mass function
f(i) of the distribution. The probability of i being in the cache,
if the cache capacity is smaller than the buffer size, is equal to
Cache capacity

Buffer size , multiplied by the factor f(i) · Buffer size.
The first rate comes from just applying the classic definition
of probability of number of favorable outcomes divided by the
total number of possible outcomes. The second factor is the
probability that one of the last Buffer size accesses is to
index i, depending on the mass function f . Thus we have:

EHR =
∑

i ∈ the buffer

f(i) · Cache capacity

Buffer size
· f(i)

1
Buffer size

(3)

= Cache capacity ·
∑

i ∈ buffer

f(i)2

(4)

This formula makes three assumptions. The probability of
accessing any buffer element must be non-zero and the size

Pattern Statistical Distribution Standard
Name Distribution Parameters Deviation

Norm 4 Normal µ=n/2 σ=n/4 n/4
Norm 6 Normal µ=n/2 σ=n/6 n/6
Norm 8 Normal µ=n/2 σ=n/8 n/8
Exp 4 Exponential λ=4/n n/4
Exp 6 Exponential λ=6/n n/6
Exp 8 Exponential λ=8/n n/8
Tri 1 Triangular a=0 b=0.4n c=n n2/18
Tri 2 Triangular a=0 b=0.6n c=n n2/18
Tri 3 Triangular a=0 b=0.8n c=n n2/18
Uni Uniform a=0 b=n n2/12

TABLE II
MEMORY ACCESS PATTERNS CONSIDERED. n IS THE SIZE OF THE BUFFER.

Fig. 5. Model Evaluation.

of the buffer must be larger than the size of the cache. These
assumptions are satisfied by the distributions in Table II and we
run the benchmarks with sufficiently large buffers. Finally, the
formula applies to steady state execution, after the algorithm
has warmed up the cache by loading its contents based on its
probability distribution. We satisfy this assumption by setting
N ACCESS to be much larger than the buffer size.

One limitation of this model is that it assumes that the cache
is fully associative, which is not true in general. As such,
despite the fact that the model is in general accurate, as it is
demonstrated in section III-C2, it slightly underestimates the
number of cache misses. Section III-C2 provides an extensive
empirical evaluation that quantifies model’s strengths and
limitations.

2) Validation of Probabilistic Model: The variety of dis-
tributions used in our synthetic benchmarks induce a wide
range of memory access patterns and L3 cache miss rates
from below 10% to above 80%. The probability distributions
with larger standard deviations induce higher miss rates due to
worse spatial memory locality. Further, cache miss rates rise
as the buffer size increases since more memory is available
for selection.

Equation 4 computes the benchmark’s miss rate based
on its available storage capacity. We validated the equation
by running the synthetic benchmarks on Xeon20MB and
compared the miss rates it predicts based on the 20MB of
L3 cache known to be available with the real cache miss rates
measured by hardware counters. Figure 5 shows the absolute
differences between these two numbers, averaged over all
the distributions in Table II. The average absolute distance
between the measured cache miss rates and the predicted ones
is always less than 10% and the average plus one standard
deviation is 15% or less. Error is highest for small buffer sizes

because the model assumes that caches are fully associative.
This under-predicts the real cache miss rate when the cache
is not heavily used and there are few cache misses. However,
as the cache becomes fully utilized by larger buffer sizes and
most memory accesses become misses (above 50% miss rate),
the details of cache associativity become unimportant and the
model’s error drops to under 5%. In summary, the data shows
that the simple analytic model of the behavior of the synthetic
benchmarks is accurate in general, especially for large buffer
sizes.

3) Measuring Cache Storage Use: Having shown that
Equation 4 accurately predicts the L3 miss rate of the synthetic
benchmarks based on the available cache storage capacity
we can now use it to predict the effective storage available
to these benchmarks when CSThr interferes with a portion
of it. This is done by running experiments where CSThr
interferes with a given synthetic benchmark’s use of cache
storage, and measuring the resulting L3 miss rate. We then
invert the formula in Equation 4 and given the observed miss
rate compute the effective amount of available cache storage.

We conducted this evaluation on the Xeon20MB archi-
tecture, with 0 to 5 CSThrs, each using 4MB buffers. The
synthetic benchmarks were parameterized with 10 different
probability distributions (Table II), 3 different degrees of data
reuse (1, 10 and 100 integer additions per load) and 22
different buffer sizes from 30MB to 74MB. The goal of this
experiment is to determine whether the effects of different
numbers of CSThrs are consistent across this wide range of
memory access patterns. Figure 6 shows the results of our
experiment. The charts from top to bottom show results with
different degrees of data reuse, least reuse on top and most
on the bottom. The charts from left to right show results with
different numbers of CSThrs, with no interference on the left
and then 1 through 5 CSThrs on the right.

Each chart shows on the y axis the amount of cache storage
that is that is available to the benchmarks, as computed by
our formula and the x-axis shows the size of the buffer used
by the benchmark (concrete buffer sizes omitted to improve
readability and are the same as in Figure 5). In addition to
the average predicted storage (across all the 10 probability
distributions), denoted by the thick horizontal line, the charts
show the region that includes the average plus and minus the
standard deviation. The length of these intervals represents
the dispersion of the measurements across all the distributions
and is smaller for more consistent predictions of cache storage
capacity. As such, the lower the length is, the more consistent
is the estimation of the equivalent cache capacity.

The data displayed in the column tagged as ”No Interfer-
ence” shows results computed without any CSThr. As such,
the predicted cache capacity should match the real cache
capacity of the machine, and they do specially when buffer
sizes close to 74MB are used. The buffer sizes close to 30MB
show lower values because, as explained in Section III-C1,
the model under-estimates the cache miss rates due to its
assumption of fully associative caches. Thus, when given the
higher miss rates measured in real experiments the inverse

of Equation 4 under-estimates the available amount of cache
storage. The error of the predictions drops as the buffer size
is increased, as seen in Figure 5, until the predictions reach
the correct capacity of 20MB.

The outcome of the experiments with no interference is the
same for all degrees of data reuse (1, 10 or 100 operations
between loads) since in these experiments the benchmarks
do not compete for the cache. When 1 CSThr is used, the
model predicts an effective cache capacity of approximately
15MB for all degrees of data reuse and 12MB with 2 CSThrs.
When we use 3, 4, or 5 CSThrs the effective cache capacity
is approximately 7, 5, and 2.5MB respectively.

One interesting phenomenon is that as the degree of reuse
rises so does the standard deviation of the predictions. Al-
though this effect is weak for 1 CSThr, it becomes stronger
as more CSThrs are added. Increasing degrees of reuse imply
decreasing frequency of memory accesses by the benchmark.
Our experiments show that for low access frequencies the
effects of CSThrs are erratic to a point where with 5 CSThrs
interfere with either as much as the entire cache or as little as
just half of it.

Overall, this validation quantifies the accuracy of the valida-
tion methodology and identifies the properties of applications
for which it has high error: high degrees of interference and
data reuse. Fortunately 100 arithmetic operations per load
represent more reuse than is present in most applications. In
particular, in scientific applications, which are typically more
regular than most other application domains, 1-10 operations
per load is considered good reuse. Our experiments thus show
that our validation methodology is accurate for most real-world
workloads.

D. Orthogonality of Cache Storage and Bandwidth Interfer-
ence

Sections III-A and III-B have demonstrated that BWThrs
and CSThrs consistently utilize a given amount of cache
bandwidth and storage, respectively. However, since both tech-
niques use the memory hierarchy there is a risk that they utilize
additional resources besides the ones they target. If so, they
would interfere with the application in multiple ways, making
each measurement reflect the use of a complex combination
of system resources that has little intuitive meaning to the
application developer. It is thus necessary to establish that
these threads have orthogonal effects: that each thread type
almost exclusively affects the resource it targets and no other.
By running the interference threads on separate cores we have
ensured that no resources private to the application’s cores are
used. In this section we quantify the degree to which BWThrs
utilize cache storage and CSThrs utilize cache bandwidth.

To measure this we executed The BWThrs (520KB buffers)
and CSThrs (4MB buffers) simultaneously on different cores
of the same Xeon20MB socket to measure each others’
resource use. Figure 7 shows the effect on the execution of
a single BWThr of concurrently running between 0 and 5
CSThrs, measured in terms of (i) the amount of memory
bandwidth effectively used by the BWThr, (ii) the measured

0

5

10

15

20

Eq
u

iv
al

e
n

t
C

ac
h

e
 C

ap
ac

it
y

(M
B

)
No Data Reuse

0

5

10

15

20

Eq
u

iv
al

en
t

C
ac

h
e

C
ap

ac
it

y
(M

B
) Moderate Data Reuse

0

5

10

15

20

30 34 38 42 46 50 54 58 62 66 68 30 34 38 42 46 50 54 58 62 66 68 30 34 38 42 46 50 54 58 62 66 68 30 34 38 42 46 50 54 58 62 66 68 30 34 38 42 46 50 54 58 62 66 68 30 34 38 42 46 50 54 58 62 66 68

0 interference thread 1 interference thread 2 interference threads 3 interference threads 4 interference thread 5 interference thread

Eq
u

iv
al

e
n

t
C

ac
h

e
 C

ap
ac

it
y

(M
B

)

Buffer Size (MB)

Extreme Data Reuse

No interference

1 interfer thread

2 interfer thread

3 interfer thread

4 interfer thread

5 interfer thread

 Buffer Size

High Deviation

Fig. 6. Evaluation of the cache capacity interference. In the top, the benchmarks compute
1 integer sum between two consecutive memory accesses. In the middle, they perform
10 integer sums and at the bottom 100 integer sums are computed between memory
accesses.

Fig. 7. Memory Bandwidth use, L3 cache miss rate and
time to do 107 iterations over its main loop of the BWThr
when running concurrently with between 0 and 5 CSThrs.

Fig. 8. Memory Bandwidth use, L3 cache miss rate and
time to to perform a read, an arithmetic addition and a write
of the CSThrs when running concurrently with between 0
and 5 BWThr.

L3 cache miss rate of the BWThr, and (iii) the total time
required to iterate 107 times over the BWThr’s main loop,
shown in Figure 2. The data shows that the BWThr behaves
the same regardless of the number of CSThrs that are running
concurrently with it. That implies that the we can run up
to 5 CSThrs without significantly impacting the memory
bandwidth.

Figure 8 shows the opposite experiment: 1 CSThr running
concurrently with between 0 and 5 BWThrs. The bandwidth
plot shows the bandwidth consumed by the CSThr and
execution time plot shows the average time the CSThr takes to
perform a read, an arithmetic addition and a write operation.
The data shows that a single BWThr has no impact on the
CSThr’s performance and 2 BWThrs have a small effect.
However, the CSThr is impacted significantly by the execution
of 3, 4 and 5 BWThrs, which implies that 3 or more BWThrs
utilize significant amounts of cache capacity. This induces L3
misses in the CSThr, which cause it to slow down and use
more bandwidth. As discussed in Section II-A, each BWThr
utilizes 2.8GB/s of bandwidth, which means that up to 5.6GB/s
can be stolen without impacting cache capacity. Since the total
memory bandwidth measured in the Xeon20MB architecture
is near 17GB/s, that means we can impact on 32% of the total,
a significant portion of it, and keep the independence of the
interference threads. Another important measurement provided
in the left hand side of figure 8 is the memory bandwidth
utilization of the CSThr. A single CSThr without additional
interference utilizes very little memory bandwidth, which fully
validates the orthogonality of CSThr and BWThr.

These results demonstrate that our measurements are indeed
highly focused for most of their dynamic range. Further, be-
cause their effects are orthogonal they can be used to represent

the application’s overall memory behavior as a simple 2-
dimensional linear space where BWThr and CSThr identify
the basis vectors: the application’s utilization of storage and
bandwidth. This projection enables application developers and
architects to reason about an application’s memory use in
the same terms as if they were using a cache simulator
without paying the big burden in terms of computing time
that architectural simulation has.

IV. PARALLEL APPLICATION STUDIES

Having presented and validated our basic measurement
methodology we now demonstrate how it can be applied
to parallel applications to gain insight into how they uti-
lize the memory hierarchy. Our evaluation focuses on the
Lulesh and MCB scientific benchmark codes. Lulesh solves a
Shock Hydrodynamics Challenge Problem that simulates large
deformations in materials using a finite differences scheme.
MCB simulates the fuel assemblies in a nuclear reactor by
simulating the flow of neutrons through it using the Monte
Carlo method. We consider the execution of these applications
on a wide range of input sizes on a cluster of nodes with the
Xeon20MB architecture, each of which has 32GB of RAM
and are connected via InfiniBand QDR (QLogic) interconnect
(40Gb/sec bandwidth). Our experiments focus on two aspects
of these applications’ performance:
• Measuring the amount of L3 storage and L3↔Main

Memory bandwidth used by these applications, and
• Characterizing their sensitivity to being provided less of

either of these resources.
Our measurements are performed by running the benchmarks
on one or more nodes, allocating some cores to the application
and executing BWThrs or CSThrs on some or all of the

Fig. 9. Performance Degradations of MCB on 24 MPI tasks. The two top figures show results obtained consedring several MPI mappings and using a 20,000
particles domain. The two figures at the bottom show results obtained when we map 1 MPI tasks per processor. Numbers of particles between 20,000 and
260,000 are considered.

remaining cores. In bandwidth experiments we run 1 or
2 BWThrs with a buffer size of 420KB each to interfere
with upto 32% of the total memory bandwidth. In storage
experiments we run between 1 and 5 CSThrs with a buffer
size of 4MB each to utilize upto 87% of the total cache
capacity (17.5MB out of 20MB). In our experiments, MCB is
run with 24 MPI processes and Lulesh with 64 MPI processes.

In each experiment we increased the amount of storage or
bandwidth utilized by the BWThrs and CSThrs to observe
both the point where the application’s execution time degraded
(indicated the amount of resource used by the application) as
well as the relationship between resource availability and per-
formance degradation. The degree to which the performance of
a parallel application degrades is a combination of two major
effects. First, when less memory bandwidth is available cache
misses take longer to complete because less bandwidth is
available to transfer the data. Further, when available memory
storage is reduced, cache accesses that are normally hits
become misses, which may also take longer than normal
since the increased number of misses may saturate available
memory bandwidth. These phenomena cause each individual
application process to slow down. Importantly, the slowdown
of each process is stochastic, with individual instructions on
different processors affected very differently by interference.
This non-deterministic slowdown of instructions introduces
noise into the application’s execution, which is a well-known
source of slowdown for parallel applications [18], [11].

The top graphs of Figure 9 show in detail the performance
degradations we have measured for several different mappings
of the processes of MCB to compute nodes when the input

set size is 20,000 particles. They show separate curves for
cases where p = 1 through 6 processes are mapped to each
Xeon20MB processor and 8-p cores are available on each
processor (each processor has 8 cores). Since MCB uses a
total of 24 processes and each node has 2 processors, when
p processes run on one processor the overall application uses
24/(2∗p) nodes. The x-axis corresponds to different numbers
of CSThrs or BWThrs running on the available cores. The
y-axis shows MCB’s execution time in this mapping and
interference level. Note that since different mappings leave
different numbers of cores available, not all combinations
of mapping and interference can be executed. The bottom
graphs show the performance degradations measured when
running MCB on problems with 20,000 to 260,000 particles.
They correspond to MCB runs on 24 Xeon20MB processors
(12 nodes), with 1 MCB process and 7 available cores per
processor. The graphs on the left focus on storage interference
and the graphs on the right present bandwidth interference
results.

The top-left graph of Figure 9 shows MCB’s performance
degradation across different process mappings. We can see
the consistency of the performance degradations accross all
the considered MPI mappings: the more processes mapped
on each processor, the less cache capacity is available for
each process and thus the same performance degradation is
induced with fewer CSThrs. This representation suggests a
simple to calculate the average cache capacity utilization of
MCB processes. For each process mapping, we consider the
experiments with no performance degradation and pick the one
that has the most CSThrs. We then consider the experiments

Fig. 10. MCB resource consumption depending on the MPI mapping.
Number ofparticles is 20,000.

with performance degradation and pick the one with the fewest
CSThrs. Our prior analysis has determined that 1, 2, 3, 4, and
5 CSThrs with a 4MB buffer size leave 15, 12, 7, 4 and 3MB
of cache capacity available to the application. We use this
information to compute for each of the above configurations
the ratio Available cache capacity

#processes to obtain the upper and lower
bound on the amount of storage available to each application
process. For MCB running on 20,000 particles (top-left graph
of Figure 9) each MCB process needs between 3.75 and
5MB of L3 capacity when 4 processes are mapped on each
processor, 3.5-6MB are required when 2 run on each processor
and 4-7MB for 1 process per processor. Performing the same
analysis for the memory bandwidth (from before, we have
17GB/s with no interference, 14.2GB/s with 1 BWThr and
11.4 with 2 BWThrs), we calculate that each MCB process’
BW utilization is 3.5-4.25GB/s, 3.80-4.7GB/s, 7.1-8.5GB/s
and 11.4-14.2GB/s when we map 4, 3, 2 and 1 processes per
processor.

Figure 10 shows these results more visually, clarifying the
trends. These measurements confirm the intuition that mapping
one processes per processor consumes more memory band-
width than other mappings because all the communications go
through the memory bus. As more processes share the same L3
more communication can go through the L3 without incurring
misses. In contrast, storage use does not change significantly
as processes are spread out. The results are similar for other
input sizes.

The bottom-left graph of Figure 9 shows MCB’s perfor-
mance degradation as 1 through 5 CSThrs are executed on
the available cores, which is equivalent to an L3 cache size of
15MB, 12MB, 7MB, 4MB and 3MB, respectively, according
to the measurements described in Section III-C3. The data
shows that when MCB simulates 20,000 to 260,000 particles,
there is little performance degradation with one, two or three
CSThrs and significant degradation of 20-25% with four or
five CSThrs. This means that on this input range each MCB
process uses between 4MB and 7MB of the L3 cache, the same
behavior as we have shown in figure 10. The fact that even
when given 2.5MB MCB’s performance only suffers by less
than 30% indicates that this application would not perform
much worse even if the L3 cache was not available on this
architecture.

The bottom-right graph of Figure 9 shows MCB’s perfor-
mance degradation when one or two BWThrs are executed to
reduce the available bandwidth (as discussed above, running
more than 2 BWThrs also uses up cache storage). A single
BWThr reduces the available bandwidth by 16% of the total
memory bandwidth (17GB/s) while two reduce it by 32%.
The impact on MCB’s performance grows as the number of
particles increases from 20,000 to 90,000 because its commu-
nication and thus miss rate grows with increasing workloads.
Above 90,000 particles the impact of bandwidth interference
drops because the application spends more time computing
and less time communicating, which reduces the pressure on
the memory buses.

Figure 11 shows the performance degradation of Lulesh [1]
as it runs with 64 MPI processes. The physical domains
simulated by lulesh are cubes of sizes from 22x22x22 to
36x36x36 units (the size of one dimension is reported on the
x axis), using the same format as Figure 9. The graphs in
the top show performance degradations we measure running
lulesh on 22x22x22 cube across different process mappings.
Experiments with 4 processes per processor show that Lulesh
overflows the L3 cache when any number of CSThrs run,
meaning that for all inputs each Lulesh process uses more than
3.5MB of storage (15MB that one CSThr leaves available,
divided by 4 Lulesh processes per processor).

The bottom graphs of figure 11 show runs on 64
Xeon20MB processors (32 nodes) and 1 process per proces-
sor. The bottom-left graph shows the performance degradation
of Lulesh with increasing number of CSThrs for 1 process
per processor. When domain size is 32x32x32 or smaller
degradation is less than 5% for 1 and 2 CSThrs but more than
10% for 5 CSThrs, indicating that each Lulesh process uses
between 2.5MB and 10MB of cache storage. For larger cubes
Lulesh overflows the L3 cache with any amount of storage
interference, suggesting that for these input sizes Lulesh
processes use more than 15MB of cache each. The bottom-
right graph of Figure 11 shows that performance degradation
is larger than 10% when domain sizes are 32 and 36 with or
two BWThrs. This is consistent with the fact the L3 cache
memory is not large enough for sizes bigger than 30 so the
applications needs the memory bus regularly to fetch data into
the cache memory.

The top graphs of figure 12 present the amount of bandwidth
and storage used by each Lulesh process on the 22x22x22 cube
input as the mapping of processers to processors is varied,
using the data from the top graphs of Figure 11. The data
shows that much like MCB, Lulesh uses more L3 bandwidth
as processes are spread out across nodes and fewer processes
share a common L3. Further, it shows that this application’s
storage use rises as processes are moved apart. This is likely
because MPI communication buffers spend longer in the cache
being transferred across sockets and nodes, making its less
available for other data. The most interesting thing shown in
this figure is that lulesh processes do not always need the same
amount of L3 storage. As such, we can see how the processes
need between 3.5 and 7MB when the cube’s size is 22x22x22

Fig. 11. Performance Degradations of Lulesh on 64 MPI tasks. The two top figures show results obtained consedring several MPI mappings and using a
22x22x22 domain. The two figures at the bottom show results obtained when we map 1 MPI process per processor. The domains considered are between
22x22x22 and 36x36x36.

Fig. 12. lulesh resource consumption depending on the MPI mapping. Two
different cubes are considered: 22x22x22 in the top and 36x36x36 at the
bottom.

and between 7 and 20 MB when the size is 36x36x36.
The above measurements make it possible to quantify

applications’ memory resource requirements for each input
size. This information is very useful to properly map tasks of
parallel applications, project performance loses if the available
resources are insufficient and also study power-performance
tradeoffs when portions of the resources are shut down. Also,

this results have been obtaining without paying the huge
burden of architectural simulation.

V. RELATED WORK

Some approaches [20] and [6] use interference threads
to steal available cache storage from a targeted application.
However, they do not control the working set size of their
cache-stealing routines or validate the exact resources they
utilize. Thus, a significant of the performance degradation that
the main application suffers may be due to memory bandwidth,
and it is impossible to know how much. Another issue that
this approaches have is that the impact on the cache by the
interfering thread is highly dependent of the targeted main
application, while we have demonstrated that our approach
has the same effect across a wide range of memory access
patterns of the main application.

Other work [8] has been focused in stealing the follow-
ing resources: L1 data cache capacity, L1 instruction cache
capacity, L2 data cache capacity and floating point functional
units available. The input set size of this approach’s interfering
threads is constant, so no sweep it is performed and, therefore,
it is impossible to infer the working set size of the targeted
application.

That work has been extended [5] to characterize the shared
hardware resources in a UltraSPARC T2 architecture. Interfer-
ence threads are used to reduce on the availability of several
key hardware resources, find out their sensitivity, and observe
how the different interference threads impact each other.
this technique is also used to characterize the most critical
shared resources of the UltraSPARC T2 architecture. Thus,
this analysis is hardware oriented and does not specifically
analyze the resource consumption by applications.

Other approaches [9] measure application performance and
memory bandwidth as a function of the available shared cache
capacity by co-running a interfering thread that steals cache ca-
pacity. They exclusively steal shared cache capacity, not mem-
ory bandwidth and they do not consider the impact that the
lack of such resources may have on parallel application. Our
approach provides more insight into application performance
because it is able to impact more computational resources and
to validate application performance degradations when running
with reduced cache storage and memory bandwidth.

Interestingly [3], some work focuses on the problem of
capturing the cache behavior of programs by a reduced
representation of the code, a clone. They acknowledge that
these techniques, while they are fast, have issues regarding
their accuracy. Our approach is able to provide a simpler
and more accurate description of the memory behavior of full
applications.

Additional research [17] has focused on measuring the
memory bandwidth and footprint required by a number of
high-performance scientific applications. A per-core memory
bandwidth of ∼300MB/s and memory footprint of 300MB
has been measured. When comparing these needs with the
constraints of DRAM technology, it is anticipated that current
memory technologies will be able to efficiently support more
than ∼100 cores on a single chip, but they may become
a performance bottleneck for manycores chips consisting of
several hundreds of cores.

Finally, techniques to accurately measure the parameters
of hardware components have been proposed [22], [21]. The
authors argue that existing micro-benchmarks are inadequate,
and present novel micro-benchmarks for determining the pa-
rameters of all levels of the memory hierarchy, including
registers, all cache levels and the translation look-aside buffer.
They implement these micro-benchmarks into an integrated
tool that can be ported to new platforms. The experimental
results show that the tool successfully determines memory
hierarchy parameters on many current platforms.

VI. CONCLUSION

As process core counts continue to rise faster than the
capabilities of their memory hierarchies, it is expected that
the available cache capacity and bandwidth per core will
drop significantly. It is thus becoming increasingly critical
to quantify how applications use the memory hierarchy to
enable developers to identify and characterize performance
bottlenecks, supporting their optimization efforts. This paper
presents and validates the Active Measurement methodology,
which quantifies an application’s utilization of the memory
hierarchy, specifically the storage and bandwidth of shared
caches. The methodology is also able to predict the applica-
tion’s performance when the required memory resources are
not available. Our approach is a significant improvement over
the prior work. It provides information that today can only
be derived by simulators but it is much faster than current
simulation-based techniques and unlike simulation makes pre-
dictions for any architecture the application may run on with

no information about its proprietary internal details. Further,
it is much more actionable than performance counter analysis
techniques because it can predict application performance
when different amounts of key resources are available.

REFERENCES

[1] Livermore unstructured lagrangian explicit shock hydrodynamics
(lulesh). https://computation.llnl.gov/casc/ShockHydro/.

[2] Monte carlo benchmark. http://www.osti.gov/estsc/details.jsp?rcdid=4793.
[3] G. Balakrishnan and Y. Solihini. West: Cloning data cache behavior

using stochastic traces. Proceedings of the 2012 IEEE 18th International
Symposium on High-Performance Computer Architecture, 2012.

[4] A. Butko, R. Garibotti, L. Ost, and G. Sassatelli. Accuracy evaluation
of GEM5 simulator system. IEEE International Workshop on Reconfig-
urable Communication-centric Systems-on-Chip (ReCoSoC), July 2012.

[5] V. Cakarev, P. Radojkovi, J. Verdu, A. Pajuelo, F. J. Cazorla, M. Ne-
mirovsky, and M. Valero. Characterizing the resource-sharing levels
in the ultrasparc t2 processor. Intl. Symposium on Microarchitecture
(MICRO), 2010.

[6] X. Chen, C. Xu, R. P. Dick, and Z. M. Mao. Performance and power
modeling in a multi-programmed multi-core environment. Proc. of the
Design Automation Conference (DAC), 2010.

[7] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conscious structure
layout. ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 1–12, 1999.

[8] D. Doucette and A. Fedorova. Base vectors: A potential technique for
microarchitectural classification of applications. Proc. of the Workshop
on the Interaction between Operating Systems and Computer Architec-
ture (WIOSCA), 2007.

[9] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten. Cache
pirating: Measuring the curse of the shared cache. Proc. of the
International Conference on Parallel Processing (ICPP), 2011.

[10] M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran. Cache-
oblivious algorithms. Proc. of the IEEE Symposium on Foundations
of Computer Science (FOCS), pages 285–297, 1999.

[11] T. Hoefler, T. Schneider, and A. Lumsdaine. Characterizing the influence
of system noise on large-scale applications by simulation. Proceedings
of the 2010 ACM/IEEE conference on Supercomputing (SC), 2010.

[12] K. A. Huck, A. D. Malony, S. Shende, and A. Morris. Scalable,
automated performance analysis with tau and perfexplorer. PARCO,
pages 629–636, 2007.

[13] P. Kogge. Exascale computing study: Technology challenges in achiev-
ing exascale systems. Technical report, DARPA IPTO, 2008.

[14] J. D. McCalpin. Memory bandwidth and machine balance in current high
performance computers. IEEE Computer Society Technical Committee
on Computer Architecture (TCCA) Newsletter, pages 19–25, 1995.

[15] J. Mellor-Crummey, R. Fowler, and D. Whalley. Tools for application-
oriented performance tuning. Proc. of the 15th International Conference
on Supercomputing, pages 154–165, 2001.

[16] N. Nethercote, R. Walsh, and J. Fitzhardinge. Building workload
characterization tools with valgrind, October 2006.

[17] M. Pavlovic, Y. Etsion, and A. Ramı́rez. Can manycores support the
requirements of scientific applications? A4MMC Workshop: Applications
for Multi- and Many-Cores, 2010.

[18] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of the missing
supercomputer performance. Proceedings of the 2003 ACM/IEEE
conference on Supercomputing (SC), 2003.

[19] M. Schulz, J. Galarowicz, D. Maghrak, W. Hachfeld, D. Montoya, and
S. Cranford. Open — speedshop: An open source infrastructure for
parallel performance analysis. Scientific Programming, pages 105 – 121,
2008.

[20] C. Xu, X. Chen, R. P. Dick, and Z. M. Mao. Cache contention and
application performance prediction for multi-core systemsa. Proc. of
the Intl. Symposium on Performance Analysis of Systems and Software
(ISPASS), 2010.

[21] K. Yotov, K. Pingali, and P. Stodghill. Automatic measurement of mem-
ory hierarchy parameters. Proceedings of the 2005 ACM SIGMETRICS
international conference on Measurement and modeling of computer
systems, pages 181–192, 2005.

[22] K. Yotov, K. Pingali, and P. Stodghill. X-ray: A tool for automatic
measurement of hardware parameters. Proceedings of the 2nd Second
International Conference on the Quantitative Evaluation of Systems,
pages 168–177, 2005.

